Table of Contents

Section A
- Definition of Composting pg. 4-5
- Composting Principles pg. 6
- In Vessel Composting Definition pg. 7
- In Vessel Composting Advantages pg. 7

Section B
- Selecting and Sizing an In-Vessel Composter pg. 8-11
- Broiler operation - Calculation / Sample (s) pg. 8
- Hog Operation - Calculation / Sample (s) pg. 9-10
- Turkey Operation – Calculation / Sample (s) pg. 11
- Bin Sizing for finished compost pg. 12
- Suggested placement pg. 12-13

Section C
- Cubic Foot Measurement on Different models (TABLE) pg. 14
- Pounds of mortality per model (TABLE) pg. 14

Section D
- Engineered Drawings of various sizes of Ecodrum™ Models pg. 15-17

Section E
- Assessment Form for Sizing pg. 18
Section F pg. 19-22
- Compost Testing Procedures pg. 19
- Compost Samples pg. 20-22

Section G pg. 23
- Operational Guide (Control, Exhaust System, Drive System) pg. 23

Section H pg. 24
- Contacts - Sales/Service and Administration pg. 24
Section A

Definition of Composting

Composting is the controlled biological decomposition and conversion of solid organic material into a humus-like substance called compost. This process is a natural transformation of organic materials into a material with environmentally beneficial applications. Composting is an aerobic process, meaning it requires oxygen. This process uses various microorganisms such as bacteria, fungi, etc. to break down the organic compounds into simpler substances.

Composting animal mortality is a viable process with a beneficial use. It reduces pathogens, diseases, and undesirable weed seeds. Properly managing air, moisture, and nutrients, the process can transform large quantities of organic material into compost in a relatively short period of time.

There are different types of composting which use different technologies, but the composting principles are all the same. The different types are: Aerated (turned) Windrow Composting, Aerated Static Pile Composting, In-Vessel Composting, and Vermicomposting.
Benefits to cured compost:

1) Increases the soil’s structure and ability to hold water and nutrients
2) Can reduce the need for pesticides by increasing the soil’s biological activity
3) Offsets use of natural resources (e.g., peat moss) for mulch
4) Diverts valuable organic materials from landfills
5) Adds organic matter and nutrients to soil, reducing the need for chemical fertilizers
6) Encourages slow release of nitrogen and lowers the carbon to nitrogen ratio, making nitrogen more available to plants
7) Kills pathogens and weed seeds
8) Prevents soil erosion
Composting Principles

In order to create a satisfactory compost, it is essential to have a favorable carbon to nitrogen ratio, as well as a sufficient moisture level and adequate oxygen. Carbon provides both an energy source and the basic building block making up about 50% of the microbial cells (wood chips, shavings, peanut hulls, etc.). Nitrogen is a crucial component of proteins, nucleic acids, amino acids, enzymes and co-enzymes necessary for cell growth and function. The ideal ratio of C:N for active composting is 25:1 to 30:1. Ratios of 20:1 up to 40:1 will consistently give good results. A minimum of 5% oxygen concentration within the pore spaces of composting materials is recommended (air contains about 21%).

During composting, the microorganisms consume oxygen while feeding on the organic matter. In addition to providing oxygen, aeration removes heat, water vapor and other gases trapped within the composting materials. The most efficient temperatures for composting are between 130 F and 160 F. At these temperatures, your organic matter will break down quicker and there will be little to no pathogens, diseases, weed seeds, and insect larvae in the compost.

Water provides the medium for chemical reactions and for the transportation of nutrients. It also allows the microorganisms to move from place to place. Ideally, you are looking for a moisture level between 50-60%. Activity ceases when the moisture level drops below 15% and when moisture levels are above 60%; the water displaces much of the air in the pore spaces of the composting materials, which limits air movement and leads to anaerobic conditions.

Heat accumulation in a compost pile can rise above 160 F due to microbial activity and the insulating qualities of the composting materials. When the temperature reaches this level, many of the microbes die or become dormant. Temperatures should be monitored and heat loss should be accelerated by forced aeration.
In Vessel Composting Definition

A process in which compostable material is enclosed in a drum, silo, bin, tunnel, reactor, or other container for the purpose of producing compost, maintained under uniform conditions of temperature and moisture where air-borne emissions are controlled.

In Vessel composters use a forced aeration and/or mechanical agitation to control conditions and promote rapid composting.

In Vessel Composting Advantages

1) Composting can be more closely controlled, leading to faster decomposition and more consistent product quality.

2) Effects of weather are diminished

3) Less manpower is required to operate the system and staff is less exposed to composting material

4) Can often be done onsite, saving collection costs

5) Less land area is required

6) Process air and leachate can be more easily collected and treated

7) Public acceptance of the facility are better

8) Can accommodate various types and amounts of organic waste (e.g., odorous bio solids & food)
Section B

Selecting and Sizing an In-Vessel Composter for a Broiler Operation:

Actual mortality log sheets are required in order to properly size an in-vessel composter.

Example:

- 4 house farm with 80,000 birds
- Birds are grown up to 5lbs
- Suffer a 5% mortality loss
- They are kept for 42 days

The Math:

\[80,000 \times 5 \times 0.05 \times 0.5 / 42 = 238.1 \text{lbs per day average} \]

The maximum daily capacity of the Ecodrum™ Model 260 is 300lbs per day, therefore it would fulfill this farm’s needs.
Selecting and Sizing an In-Vessel Composter for a Sow Site

Example:

- 2500 sow farm
- Each sow produces on average 26 weanlings per year
- 13% mortality in the weanlings and 8% mortality in sows
- The weanlings average about 7lbs and the sows average about 550lbs
- There is about 100lbs of placenta per day

The Math:

- 2500 sows* 26 weanlings = 65,000 weanlings per year
- 65,000*0.13 = 8450lbs of weanling mortality per year
- 8450*7lbs/365 days = 162lbs of weanling mortality per day

- 2500 sows* 0.08 = 200
- 200*550lbs = 110,000lbs of sow mortality per year
- 110,000/365 days = 301lbs of sow mortality per day

- 162lbs + 301lbs + 100lbs = 563lbs of mortality per day
- A Model 460 would fulfill this farm’s needs.
Selecting and Sizing an In-Vessel Composter for a Finisher Pig Site

Example:

- 2500 head in nursery barn and 2500 head in finisher barn
- Average loss of 3% in each barn therefore a 6% loss in total
- 125lbs is the average weight loss

The Math:

\[2500 \times 0.06 \times 125 = 37,500\]

\[37,500 / 180 \text{ days} = 208\text{lbs per day}\]

These calculations show a model 260 would satisfy the needs of this farm.
Selecting and Sizing an In-Vessel Composter for a Turkey Thoms Operation

Example:

- 45lbs Thom average (0.70) = 31.5lbs
- 2 barns (9,000) per barn = 18,000
- 18 weeks being the grow out period (126 days)
- 12% mortality

The Math:

\[
31.5 \times 18,000 = 567,000 \times 0.12 = 56,700 / 126 = 540lbs \text{ per day}
\]

Although this would show using a Model 460, we understand that most of the weight will come at the end of the grow-out cycle. In order to process these birds, we recommend a Model 560, and add two storage bins. At the end of the grow-out when the mortality numbers are high, any excess mortality that cannot be inserted into the Ecodrum™ can be stored in the storage bins. Once birds have gone to market the overflow can be inputted into the Ecodrum™ Composter so that no birds remain on site when the producer receives the next flock.
Bin Sizing for Finished Compost

We suggest having a 10 x 10 bin for finishing compost.

Suggested placement

We suggest that the Ecodrum™ be sheltered in order to keep it out of the elements such as rain, snow, wind etc. A concrete pad is also heavily recommended, so as to have a more solid and level surface for the composter to rest on.
Power

The Ecodrum™ In-Vessel composter requires a 220V outlet. The site which will feature an Ecodrum™ should already have a 220V receptacle installed in order to begin composting as soon as the composter is installed.
Section C

Cubic Foot Measurement on each Model

<table>
<thead>
<tr>
<th>Ecodrum™ Model</th>
<th>260</th>
<th>360</th>
<th>460</th>
<th>560</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement (ft³)</td>
<td>428</td>
<td>642</td>
<td>856</td>
<td>1070</td>
</tr>
</tbody>
</table>

Pounds of mortality per model

<table>
<thead>
<tr>
<th>Ecodrum™ Model</th>
<th>260</th>
<th>360</th>
<th>460</th>
<th>560</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Daily Capacity*</td>
<td>300</td>
<td>475</td>
<td>625</td>
<td>750</td>
</tr>
</tbody>
</table>

Capacities listed are maximum estimated pounds of mortality. Actual capacity of any Ecodrum™ model may vary depending on factors such as species, recipe and bulking material used.
Section D

Engineered Drawings of various sizes of In Vessel composters

ECODRUM™ MODEL 260

VOLTAGE: 220V
AMPERAGE: 20A
WEIGHT: 5000LBS
ALL DIMENSIONS FOR REFERENCE ONLY
ECODRUM™ MODEL 360

VOLTAGE: 220V
AMPERAGE: 20A
WEIGHT: 7000LBS
ALL DIMENSIONS FOR REFERENCE ONLY

ECODRUM™ MODEL 460

VOLTAGE: 220V
AMPERAGE: 20A
WEIGHT: 8500LBS
ALL DIMENSIONS FOR REFERENCE ONLY
Ecodrum™ Model 560

Voltage: 220V
Amperage: 20A
Weight: 11000lbs
All Dimensions for Reference Only
Section E

FARM ASSESSMENT AND RECOMMENDATIONS

Location: __________________________ Date: __________

OVERVIEW
Ecodrum™ In-Vessel Composter is pleased to submit this Farm Needs Assessment and Model Recommendation. We have partnered with dozens of NRCS county offices and agents, lenders, and other government offices throughout North America. Our business is committed to improving the customer experience and success through high levels of accuracy, training and communication.

<table>
<thead>
<tr>
<th>NEEDS ASSESSMENT (information provided by client)</th>
<th>ECODRUM™ RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of houses:</td>
<td>Ecodrum™ Model:</td>
</tr>
<tr>
<td>A. Total birds per flock:</td>
<td>Max daily loading rate:</td>
</tr>
<tr>
<td>B. Average finish weight:</td>
<td>Average daily loading rate:</td>
</tr>
<tr>
<td>C. Average % mortality:</td>
<td>Bulking material and ratio:</td>
</tr>
<tr>
<td>D. Average flock days:</td>
<td>Daily rotation schedule:</td>
</tr>
<tr>
<td>Avg daily mortality (\text{calculate } ABC*.5/D =)</td>
<td>Air exhaust schedule: up to 10 minutes per hour</td>
</tr>
</tbody>
</table>

ADDITIONAL COMMENTS
a) The Ecodrum™ compost system is monitored by temperature as shown on the temperature dial. Operating temp should be 131F or higher, and be recorded in the daily Log Sheet provided.
b) The Ecodrum™ takes about 14 days to process mortalities into compost. However, exiting compost should have additional 30 days storage.
c) Dry storage is strongly recommended for bulking material.
d) Additional processing of mortalities is not required.
e) This proposal is based on information provided by the client, as signed below.
f) This proposal is non-transferable and expires 3 months from the above date.
g) Farm rep will submit three lab samples for testing, according to Ecodrum™’s instructions.

ADDITIONAL RESOURCES:
http://www.ecodrumcomposter.com
http://www.facebook.com/ecodrumcomposter/

CONCLUSION
We look forward to working with you to, and to meeting the challenges ahead with effective solutions. If you have any questions on this proposal, feel free to contact your Ecodrum™ representative, or Byron Irwin at byron@ecodrumcomposter.com or 701 446 6139.

Thank you for your consideration,

_______________________________________ ______________________________________
Ecodrum™ In-Vessel composter Farm Representative:
Ecodrum™ Representative: Farm Contact Info:

_______________________________________ ______________________________________
Page | 18
Ecodrum™ Information Guide (Revised 08/17)
Section F

Compost Testing Procedures

Ecodrum™ Composter offers every producer the opportunity to have their compost pile (finished product) tested for pathogens. The producer contacts Ecodrum™ for a Compost Sample Submittal Form which we fill out and send back. The producer must then take a sample and send it to whichever testing facility Ecodrum™ recommends.

The recommended sampling procedure is as follows:

1. Wearing latex gloves, remove approximately 1 quart of material from the middle of the discharge pile. Insert the material into a zip lock bag, remove air and lock. Place the bag into a second zip lock bag.
2. Fill out the date on the Lab Submittal Form.
3. Place the zip lock bagged sample and the dated Lab Submission Form into a USPS Priority Mail Small Flat Rate box for shipping.
4. Mail the US Post Priority box at the local post office

If there are ever any questions, it is recommended that the producer stays in touch with their local Ecodrum™ representative or the Ecodrum™ head office.
Compost Samples

Typical Lab Analysis Report: Broiler chickens

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Analyzed Result</th>
<th>Certified Result</th>
<th>Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture @ 75 C</td>
<td>%</td>
<td>43.30</td>
<td>TMECC 33.03-A</td>
<td></td>
</tr>
<tr>
<td>Dry Matter</td>
<td>%</td>
<td>56.76</td>
<td>TMECC 33.03-A</td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen (N)</td>
<td>%</td>
<td>2.02</td>
<td>TMECC 04.02-D</td>
<td></td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>%</td>
<td>0.78</td>
<td>TMECC 04.03-A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus (P2O5)</td>
<td>%</td>
<td>1.19</td>
<td>TMECC 04.03-A</td>
<td></td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>%</td>
<td>1.48</td>
<td>TMECC 04.04-A</td>
<td></td>
</tr>
<tr>
<td>P.O.S (K2O)</td>
<td>%</td>
<td>1.74</td>
<td>TMECC 04.04-A</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliforms MPN/MG</td>
<td>MPN/g dry</td>
<td>8</td>
<td>SWA949-00211-TMECC</td>
<td></td>
</tr>
<tr>
<td>Pathogens Reduction - PASS/FAIL</td>
<td></td>
<td>pass/fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: TMECC: Test Methods for the Examination of Composting and Compost, The U.S. Composting Council.

Report Approved: [Signature]
Approval Date: 11/21/2012
Typical Lab Analysis Report: Turkeys

COMPOST ANALYSIS REPORT

REPORT NO. F417184844
ACCOUNT NUMBER 68930
DATE RECEIVED: 06/06/2014
DATE REPORTED: 06/06/2014

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>ANALYSIS RESULT</th>
<th>DRY BASIS RESULT</th>
<th>ANALYSIS METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture @ 70°C</td>
<td>%</td>
<td>36.89</td>
<td></td>
<td>TMCC 03.09-A</td>
</tr>
<tr>
<td>Dry Matter</td>
<td>%</td>
<td>63.11</td>
<td></td>
<td>TMCC 03.09-A</td>
</tr>
<tr>
<td>Total Nitrogen (N)</td>
<td>%</td>
<td>1.22</td>
<td>1.94</td>
<td>TMCC 04.02-D</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>%</td>
<td>0.33</td>
<td>0.12</td>
<td>TMCC 04.03-A</td>
</tr>
<tr>
<td>Phosphorus (P2O5)</td>
<td>%</td>
<td>0.75</td>
<td>1.19</td>
<td>TMCC 04.03-A</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>%</td>
<td>0.45</td>
<td>0.71</td>
<td>TMCC 04.04-A</td>
</tr>
<tr>
<td>Potassium (K2O)</td>
<td>%</td>
<td>0.54</td>
<td>0.85</td>
<td>TMCC 04.04-A</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>8.3</td>
<td></td>
<td>TMCC 04.11-A</td>
</tr>
<tr>
<td>Fecal Coliform/MPN</td>
<td>MPN/g dry</td>
<td>0</td>
<td></td>
<td>SN0280-8221E TMCC</td>
</tr>
<tr>
<td>Pathogen Reduction - PASS/FAIL</td>
<td>pass/fail</td>
<td>PASS</td>
<td>40 CFR 503 Class A</td>
<td></td>
</tr>
<tr>
<td>Compost Color</td>
<td></td>
<td>4</td>
<td></td>
<td>TMCC 05.03-A</td>
</tr>
<tr>
<td>Compost Odor</td>
<td></td>
<td>2</td>
<td></td>
<td>TMCC 05.03-A</td>
</tr>
<tr>
<td>Maturity Index</td>
<td></td>
<td>1</td>
<td></td>
<td>TMCC 05.09-A</td>
</tr>
</tbody>
</table>

TMCC - Test Methods for the Examination of Composting and Compost. The U.S. Composting Council.

Report Approved By:
Approval Date:

COMPOST ANALYSIS REPORT

REPORT NO. F13101844
ACCOUNT NUMBER 68930
DATE RECEIVED: 11/29/2013
DATE REPORTED: 11/29/2013

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>ANALYSIS RESULT</th>
<th>DRY BASIS RESULT</th>
<th>ANALYSIS METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture @ 70°C</td>
<td>%</td>
<td>48.07</td>
<td></td>
<td>TMCC 03.09-A</td>
</tr>
<tr>
<td>Dry Matter</td>
<td>%</td>
<td>51.13</td>
<td></td>
<td>TMCC 03.09-A</td>
</tr>
<tr>
<td>Total Nitrogen (N)</td>
<td>%</td>
<td>1.56</td>
<td>2.93</td>
<td>TMCC 04.02-D</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>%</td>
<td>0.24</td>
<td>0.43</td>
<td>TMCC 04.03-A</td>
</tr>
<tr>
<td>Phosphorus (P2O5)</td>
<td>%</td>
<td>0.53</td>
<td>0.99</td>
<td>TMCC 04.03-A</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>%</td>
<td>0.28</td>
<td>0.53</td>
<td>TMCC 04.04-A</td>
</tr>
<tr>
<td>Potassium (K2O)</td>
<td>%</td>
<td>0.34</td>
<td>0.64</td>
<td>TMCC 04.04-A</td>
</tr>
<tr>
<td>Fecal Coliform/MPN</td>
<td>MPN/g dry</td>
<td>3</td>
<td></td>
<td>60281-8221E TMCC</td>
</tr>
<tr>
<td>Pathogen Reduction - PASS/FAIL</td>
<td>pass/fail</td>
<td>PASS</td>
<td>40 CFR 503 Class A</td>
<td></td>
</tr>
</tbody>
</table>

TMCC - Test Methods for the Examination of Composting and Compost. The U.S. Composting Council.

Report Approved By:
Approval Date:
Typical Lab Analysis Report: Finisher pigs

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>ANALYSIS RESULT</th>
<th>DRY BASIS RESULT</th>
<th>ANALYSIS METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture @ 70°C</td>
<td>%</td>
<td>32.23</td>
<td></td>
<td>TMECC 03:99-A</td>
</tr>
<tr>
<td>Dry Matter</td>
<td>%</td>
<td>67.77</td>
<td></td>
<td>TMECC 03:99-A</td>
</tr>
<tr>
<td>Total Nitrogen (N)</td>
<td>%</td>
<td>2.31</td>
<td>3.41</td>
<td>TMECC 04:82-D</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>%</td>
<td>0.91</td>
<td>1.34</td>
<td>TMECC 04:83-A</td>
</tr>
<tr>
<td>Phosphate (P2O5)</td>
<td>%</td>
<td>2.09</td>
<td>3.07</td>
<td>TMECC 04:83-A</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>%</td>
<td>1.29</td>
<td>1.90</td>
<td>TMECC 04:84-A</td>
</tr>
<tr>
<td>Potash (K2O)</td>
<td>%</td>
<td>1.55</td>
<td>2.28</td>
<td>TMECC 04:84-A</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>8.1</td>
<td></td>
<td>TMECC 04:11-A</td>
</tr>
<tr>
<td>Fecal Coliform/MPN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathogen Reduction - PASS/FAIL</td>
<td></td>
<td>PASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost Color</td>
<td></td>
<td>3</td>
<td></td>
<td>TMECC 05:83-A</td>
</tr>
<tr>
<td>Compost Odor</td>
<td></td>
<td>4</td>
<td></td>
<td>TMECC 05:83-A</td>
</tr>
<tr>
<td>Maturity Index</td>
<td></td>
<td>1</td>
<td></td>
<td>TMECC 05:83-A</td>
</tr>
</tbody>
</table>

Report Approved By: ___________________________ Approval Date: 8/20/2014
Operational Guide:

Exhaust System

The Ecodrum™ features an exhaust system which draws air from the discharge end through the composting material and out the drive end. The fan, which draws air through the compost, runs for a set time every hour. This system helps to increase temperature within the drum and improves the quality of the finished compost.

Drive System

The Ecodrum™ features a heavy-duty drive system with long lasting components, to rotate the in-vessel compost drum according to the control box programming. Each rotation takes approximately 15 minutes, and each model has a recommended range of rotations.

Control (Standard)

The Ecodrum™ features a timer based control box which automates the daily operation of the exhaust system and the drive system. For further instructions on the control box, see the Ecodrum™ Operation, Maintenance & Training Guide.
Section H

Contacts

National Sales Manager: Byron Irwin
Atlanta, GA
Email: byron@ecodrumcomposter.com
Phone: 701-446-6139

Regional Sales Manager: Jake Smith
Nunnely, TN
(TN/NC/SC)
Email: jake@ecodrumcomposter.com
Phone: 615-630-9676

Regional Sales Manager: Justin Glasscock
Nacogdoches, TX
(TX/LA/MS)
Email: justin.glasscock@ecodrumcomposter.com
Phone: 936-234-2684

Dealer: LNS Equipment Sales
Woodland, AL
(Alabama)
Email: braughton@yahoo.com
Phone: 256-397-2764

Dealer: Hindsite Solutions
Ozark, AR
(AR/MO/OK)
Email: hindsitesolutions@gmail.com
Phone: 479-206-2918

Marketing: Holden Bunko
Morris, MB, Canada
Email: holden@ecodrumcomposter.com
Phone: 701-566-1273

Service: John Green
Magazine, AR
Email: john.green@ecodrumcomposter.com
Phone: 479-508-7122

More information can be found online at:
ecodrumcomposter.com or facebook.com/ecodrumcomposter